

А.М. Караченова¹, ассистент кафедры поликлинической терапии с курсом медицинской реабилитации (b_a_m_2010@mail.ru);

Е.Н. Романова¹, доктор медицинских наук, профессор, заведующая кафедрой поликлинической терапии с курсом медицинской реабилитации (elena-r-chita@yandex.ru).

¹ Федеральное государственное бюджетное образовательное учреждение высшего образования «Читинская государственная медицинская академия» Министерства здравоохранения Российской Федерации (672090, г. Чита, ул. Горького, д. 39A)

Цель. Оценить наличие взаимосвязи между сывороточным содержанием витамина D и полиморфизмом гена рецептора витамина D с тяжестью течения COVID-19-ассоциированного поражения легких. *Материалы и методы*. В работе представлены результаты обследования 200 человек через 1 месяц после перенесенного COVID-ассоциированного поражения легких. Пациенты были разделены на группы по 50 человек в зависимости от степени поражения легких по результатам проведения компьютерной томографии (KT): 1-я группа (KT-1), медиана по возрасту составила 51,5 [50,5; 54,8]; 2-я группа (KT-2), медиана по возрасту 57,0 [53,1; 57,0]; 3-я группа (KT-3), медиана по возрасту 52,5 [51,9; 55,0]; 4-я группа (KT-4), медиана 55,0 [53,2; 56,4]. В группу контроля вошли 56 человек относительно здоровых лиц, не болевших коронавирусной инфекцией, медиана по возрасту составила 55,0 [51,1; 55,0]. Все группы были сопоставимы по возрасту и полу. В сыворотке крови исследовали концентрацию общего 25-гидроксивитамина D (25(OH)D). Также проведено молекулярно-генетическое исследование гена рецептора витамина D: 283 A > G (Bsml) и 2 A > G (Fokl).

Результаты. Учитывая полученные результаты, можно предположить, что недостаточное содержание в крови витамина D может являться одним из факторов, способствующих осложненному течению коронавирусной инфекции, а также фактором риска ухудшения течения COVID-19-ассоциированного поражения легких.

Заключение. Недостаточное содержание в крови 25(OH)D может являться одним из факторов, способствующих осложненному течению коронавирусной инфекции.

Ключевые слова: COVID-19-ассоциированное поражение легких, полиморфизм гена рецептора витамина D: 283 A > G (Bsml) и 2 A > G (Fokl).

Vitamin D level and polymorphism of its receptor gene (Bsml, Fokl) in patients with coronavirus infection

A.M. Karachenova¹, Assistant of the Department of Polyclinic Therapy with a course of medical rehabilitation (b a m 2010@mail.ru):

E.N. Romanova¹, Doctor of Medical Sciences, Professor, Head of the Department of Polyclinic Therapy with a course of medical rehabilitation (elena-r-chita@yandex.ru).

¹ Federal State Budgetary Educational Institution of Higher Education "Chita State Medical Academy" of the Ministry of Health of the Russian Federation (39A Gorky str., Chita, 672090)

Objective. To assess the relationship between the serum vitamin D content and the polymorphism of the vitamin D receptor gene with the severity of the course of COVID-19-associated lung damage.

Materials and methods. The paper presents the results of a survey of 200 people 1 month after suffering COVID-associated lung damage. The patients were divided into groups of 50 people depending on the degree of lung damage according to the results of computed tomography (CT): Group 1 (CT-1), median age was 51,5 [50,5; 54,8]; Group 2 (CT-2), median age 57,0 [53,1; 57,0]; Group 3 (CT-3), median age 52,5 [51,9; 55,0]; group 4 (CT-4), median 55.0 [53,2; 56,4]. The control group included 56 relatively healthy individuals who did not suffer from coronavirus infection, the median age was 55,0 [51,1; 55,0]. All groups were comparable in age and gender. The concentration of total 25-hydroxyvitamin D (25(OH)D) in the blood serum was studied. A molecular genetic study of the vitamin D receptor gene was also performed: 283 A > G (Bsml) and 2 A > G (Fokl).

Results. Given the results obtained, it can be assumed that insufficient vitamin D content in the blood may be one of the factors contributing to the complicated course of coronavirus infection, as well as a risk factor for worsening the course of COVID-19-associated lung damage.

Conclusion. Insufficient blood content of 25(OH)D may be one of the factors contributing to the complicated course of coronavirus infection.

Keywords: COVID-19-associated lung damage, vitamin D receptor gene polymorphism: 283 A > G (Bsml) and 2 A > G (Fokl).

ВВЕДЕНИЕ

Дефицит и недостаточность витамина D, встречающиеся у 80 % россиян, связаны с нарушениями функционирования врожденного и приобретенного иммунитета, что приводит к повышенному риску заражения вирусными и бактериальными инфекциями. На фоне недостаточности витамина D у пациентов значительно снижается резистентность организма к бактериальным и вирусным заболеваниям (ОРВИ, грипп, ринит, бронхит, обструктивные заболевания легких) [1–4].

ЦЕЛЬ ИССЛЕДОВАНИЯ

Цель исследования — оценить наличие взаимосвязи между сывороточным содержанием витамина D и полиморфизмом гена рецептора витамина D с тяжестью течения COVID-19-ассоциированного поражения легких.

МАТЕРИАЛЫ И МЕТОДЫ

В исследование были включены 200 пациентов после перенесенного COVID-19-ассоциированного поражения легких через 1 месяц после выписки из моностационаров г. Читы. Пациенты были разделены на группы по 50 человек, в зависимости от степени поражения легких по результатам проведенной компьютерной томографии (КТ): 1-я группа (КТ-1), медиана по возрасту составила 51,5 [50,5; 54,8]; 2-я группа (КТ-2), медиана по возрасту 57,0 [53,1; 57,0]; 3-я группа (КТ-3), медиана по возрасту 52,5 [51,9; 55,0]; 4-я группа (КТ-4), медиана 55,0 [53,2; 56,4]. В исследование включались пациенты, у которых диагноз новой коронавирусной инфекции был подтвержден при обнаружении PHK вируса SARS-CoV-2 с помощью полимеразной цепной реакции (ПЦР). Критериями исключения являлись: лимфо-, миелопролиферативные заболевания, системные заболевания, по поводу которых назначалась иммуносупрессивная терапия, ВИЧ-инфекция, хроническая алкогольная интоксикация, беременность, прием препаратов витамина D. В группу контроля были включены 56 относительно здоровых лиц, не болевших ранее коронавирусной инфекцией и другими острыми респираторными заболеваниями за последние 3 месяца, медиана по возрасту составила 55,0 [51,1; 55,0]. Все исследуемые группы

были сопоставимы по полу и возрасту. Содержание витамина D (уровень общего 25-гидроксивитамина D) сыворотки крови определяли методом иммунохимического анализа, молекулярно-генетические исследования гена рецептора витамина D 283 A > G (Bsml) (rs 1544410) и 2 A > G (Fokl) (rs 2228570) проводилось методом ПЦР с аллель специфичными праймерами. Статистическая обработка результатов исследования осуществлялась с помощью пакета программ IBM SPSS Statistics Version 25.0 (лицензия № Z125-3301-14, IBM, США) [5].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При анализе концентрации витамина D в исследуемых группах было выявлено меньшее его содержание у пациентов с COVID-19-ассоциированным поражением легких в сравнении с группой контроля. По сравнению с 1 группой — в 1,2 [1,14; 1,22] раза (р < 0,001), со 2 группой — в 1,3 [1,22; 1,31] раза (р < 0,001), с 3 группой — в 1,4 [1,29; 1,38] раза (р < 0,001) и с 4 группой — 1,4 [1,34; 1,45] раза (р < 0,001) (табл. 1). Также выявлено более низкое содержание витамина D в группах пациентов с большим поражением легочной ткани — в 3 (КТ-3) и 4 (КТ-4) по сравнению с 1 группой (КТ-1) в 1,12 [1,09; 1,17] и 1,17 [1,13; 1,23] раза соответственно (р < 0,001), в 4 (КТ-4) по сравнению со 2 (КТ-2) в 1,12 [1,06; 1,15] раза (р < 0,001) (табл. 1).

В проведенном исследовании снижение содержания витамина D было выявлено у 184 пациентов (92 %). При этом в 1 группе пациентов с КТ-1 у 41 (82 %), во 2-ой группе (КТ-2) у 46 пациентов (92 %), в 3 группе (КТ-3) у 48 пациентов (96 %), в 4 группе (КТ-4) у 49 (98 %) исследуемых. В группе контроля у большей части исследуемых регистрировались целевые значения 25(ОН)D (87,5 %). Этот показатель выше по сравнению с 1 группой в 4,9 раза (р < 0,001), со 2 группой в 10,9 раз (р < 0,001), с 3 группой в 21,9 (р < 0,001), с 4 группой в 43,8 раз (р < 0,001) (табл. 2).

При анализе между группами пациентов, в зависимости от тяжести течения COVID-19-ассоциированного поражения легких, целевые уровни витамина D в 1 группе исследуемых (КТ-1) по сравнению с 3 (КТ-3) и 4 (КТ-4) группами определялись соответственно в 4,5 (р = 0,03) и 9 раз (р = 0,02)

Таблица 1

Концентрация витамина D в крови у пациентов исследуемых групп The concentration of vitamin D in the blood of patients of the studied groups

			Тестовая статистика			
Исследуемые		Концентрация		Манна-Уитни		
группы		витамина D, нг/мл Ме [Q1; Q3]	Краскелла- Уоллиса	Сравнение с группой контроля	Сравнение исследуемых групп	
Группа контроля, n = 56	К	33,17 [32,46; 33,53]		$U_{\kappa-1} = 397,5,$ $p_{\kappa-1} < 0,001;$ $U_{\kappa-2} = 172,0,$ $p_{\kappa-2} < 0,001;$ $U_{\kappa-3} = 96,5,$	$\begin{array}{c} U_{1.2} = 907,0, \\ p_{1.2} = 0,02; \\ U_{1.3} = 512,0, \\ p_{1.3} < 0,001; \\ U_{1.4} = 421,0, \\ p_{1.4} < 0,001; \\ U_{2.3} = 861,0, \\ p_{2.3} = 0,007; \\ U_{2.4} = 702,0, \\ p_{2.4} < 0,001; \\ U_{3.4} = 1010,0, \\ p_{3.4} = 0,1. \end{array}$	
Группа 1 (КТ-1), n = 50	1	27,53 [27,41; 28,43]				
Группа 2 (КТ-2), n = 50	2	26,41 [25,65; 26,61]	H = 130,53, df = 4, P < 0,001.			
Группа 3 (КТ-3), n = 50	3	24,54 [24,23; 25,11]		p _{κ-3} < 0,001; U _{κ-4} = 73,5, p _{κ-4} < 0,001.		
Группа 4 (КТ-4), n = 50	4	23,51 [23,17; 24,19]				

Примечание: статистическая значимость различий между: $p_{\kappa-1}$ — группой контроля и 1 группой; $p_{\kappa-2}$ — группой контроля и 2 группой; $p_{\kappa-3}$ — группой контроля и 3 группой; $p_{\kappa-4}$ — группой контроля и 4 группой; p_{1-2} — между 1 и 2 группами пациентов; p_{1-3} — между 1 и 3 группами пациентов; p_{1-4} — между 1 и 4 группами пациентов; p_{2-3} — между 2 и 4 группами пациентов; p_{3-4} — между 3 и 4 группами пациентов.

Таблица 2
Характеристика пациентов в зависимости от уровня концентрации витамина D
Characteristics of patients depending on the level of vitamin D concentration

Исследуемые группы		Кол-во пациентов с пониженным уровнем 25(ОН)D (менее 30 нг/мл)	Кол-во пациентов с целевым уровнем 25(ОН)D (от 30 до 60 нг/мл)	Тестовая статистика р х²
Группа контроля, n = 56	к	12,5 % (7/56)	87,5 % (49/56)	$\chi^2_{\kappa-1} = 51,5; p_{\kappa-1} < 0,001;$
Группа 1 (КТ-1), n = 50	1	82 % (41/50)	18 % (9/50)	$\chi^{2}_{\kappa-2} = 66.8; p_{\kappa-2} < 0.001;$ $\chi^{2}_{\kappa-3} = 24.1; p_{\kappa3} < 0.001;$ $\chi^{2}_{\kappa-4} = 23.58; p_{\kappa4} < 0.001.$
Группа 2 (КТ-2), n = 50	2	92 % (46/50)	8 % (4/50)	$\chi^2_{1-2} = 1,4$; $p_{1-2} = 0,14$; $\chi^2_{1-3} = 5,01$; $p_{1-3} = 0,03$;
Группа 3 (КТ-3), n = 50	3	96 % (48/50)	4 % (2/50)	$\chi^2_{1-4} = 5,4; p_{1-4} = 0,02.$ $F_{2-3} = 0,7; p_{2-3} = 0,68$
Группа 4 (КТ-4), n = 50	4	98 % (49/50)	2 % (1/50)	$F_{2-4} = 1,47; p_{2-4} = 0,21$ $F_{3-4} = 0,6p_{3-4} = 0,62$

Примечание: см. таблицу 1

чаще (табл. 2). Таким образом, можно предположить, что снижение концентрации витамина D в сыворотке крови является одним из факторов риска развития

коронавирусной инфекции, а также фактором риска ухудшения течения COVID-19-ассоциированного поражения легких.

В нашем исследовании удалось провести генетические исследования у 156 пациентов, в связи с чем сравнение групп проводилось между 1, 2 (КТ-1, 2) — І группа и 3, 4 (КТ-3, 4) — ІІ группа. При анализе полиморфизма гена рецептора витамина D VDR: 283 A > G у пациентов с COVID-19-ассоциированным поражением легких выявлено, что аллель G чаще встречается у пациентов с меньшим объемом поражения легочной ткани (КТ-1, 2)

по сравнению с контролем в 1,2 раза (р < 0,03; ОШ = 0,6). Также выявлено, что у пациентов с меньшим объемом поражения легочной ткани (КТ-1, 2) превалирует носительство аллели G в 1,4 (р < 0,001; ОШ = 2,5) по сравнению с группой сравнения (КТ-3, 4). У пациентов с большим объемом поражения легочной ткани (КТ-3, 4) доминирует носительство аллели A в 1,8 раз соответственно (р < 0,001; ОШ = 0,4). Анализ генотипов полиморфизма гена

Таблица 3

Распределение частоты аллелей и генотипов полиморфизма гена рецептора витамина D VDR: 283

A > G (Bsml), VDR:2 A > G (Fokl) у пациентов с COVID-19-ассоциированным поражением легких

Distribution of the frequency of alleles and genotypes of the polymorphism of the vitamin D receptor gene VDR: 283 A > G (Bsml), VDR:2 A > G (Fokl) in patients with COVID-19-associated lung disease

		Группа контроля n = 56	Исследуемые группы			
Ген	Генотипы и аллели		l группа (KT-1, 2) n = 74	II группа (KT-3, 4) n = 82	Тестовая статистика	Попарное сравнение исследуемых групп
VDR: 283 A>G	G	60,7 % (68/112)	73,6 % (109/148)	53 % (87/164)	$\chi^2 = 14,21$ df = 2 p < 0,001	$\chi^{2}_{\kappa-1} = 4,91; p_{\kappa-1} = 0,03;$ $\chi^{2}_{\kappa-2} = 1,59; p_{\kappa-2} = 0,21;$ $\chi^{2}_{1-2} = 14,13; p_{1-2} < 0,001;$
	Α	39,3 % (44/112)	26,4 % (39/148)	47 % (77/164)		
	G/G	33,9 % (19/56)	56,8 % (42/74)	32,9 % (27/82)		$\chi^2_{\kappa-1} = 6,67; p_{\kappa-1} = 0,01;$ $\chi^2_{\kappa-2} = 0,02; p_{\kappa-2} = 0,90;$ $\chi^2_{1-2} = 8,96; p_{1-2} = 0,003;$
	A/G	53,6 % (30/56)	33,8 % (25/74)	40,2 % (33/82)	$\chi^2 = 17,24$ df = 4 p = 0,002	$\chi^{2}_{\kappa-1} = 5,11; p_{\kappa-1} = 0,02;$ $\chi^{2}_{\kappa-2} = 2,38; p_{\kappa-2} = 0,12;$ $\chi^{2}_{1-2} = 0,69; p_{1-2} = 0,41;$
	A/A	12,5 % (7/56)	9,5 % (7/74)	26,8 % (22/82)		$\chi^{2}_{\kappa-1} = 0.07; p_{\kappa-1} = 0.79;$ $\chi^{2}_{\kappa-2} = 4.12; p_{\kappa-2} = 0.04;$ $\chi^{2}_{1-2} = 7.78; p_{1-2} = 0.006;$
VDR: 2 A > G	А	39,3 % (44/112)	41,2 % (61/148)	40,9 % (67/164)	$\chi^2 = 0.11$ Df = 2	$\chi^{2}_{\kappa-1} = 0.09; p_{\kappa-1} = 0.75;$ $\chi^{2}_{\kappa-2} = 0.07; p_{\kappa-2} = 0.79;$ $\chi^{2}_{1-2} = 0.004; p_{1-2} = 0.95;$
	G	60,7 % (68/112)	58,8 % (87/148)	59,1 % (97/164)	P = 0,95	
	A/A	8,9 % (5/56)	23,0 % (17/74)	22 % (18/82)	2 40 20	$\chi^{2}_{\kappa-1} = 3,53; p_{\kappa-1} = 0,04;$ $\chi^{2}_{\kappa-2} = 3,18; p_{\kappa-2} = 0,04;$ $\chi^{2}_{1-2} = 0,02; p_{1-2} = 0,88;$
	A/G	60,7 % (34/56)	36,5 % (27/74)	37,8 % (31/82)	$\chi^2 = 10,38$ $df = 4$ $p = 0,035$	$\chi^{2}_{\kappa-1} = 7,51; p_{\kappa-1} = 0,007;$ $\chi^{2}_{\kappa-2} = 7,01; p_{\kappa-2} = 0,009;$ $\chi^{2}_{1-2} = 0,03; p_{1-2} = 0,87;$
	G/G	30,4 % (17/56)	40,5 % (30/74)	40,2 % (33/82)		$\chi^{2}_{\kappa-1} = 1,43; p_{\kappa-1} = 0,23;$ $\chi^{2}_{\kappa-2} = 1,41; p_{\kappa-2} = 0,24;$ $\chi^{2}_{1-2} = 0,001; p_{1-2} = 0,97;$

Примечание: статистическая значимость различий между: $p_{\kappa-1}$ — группой контроля и 1 группой; $p_{\kappa-2}$ — группой контроля и 2 группой; p_{1-2} –между 1 и 2 группами пациентов.

рецептора витамина D VDR: 283 A > G показал, что полиморфизм G/ G чаще встречается у пациентов с KT-1, 2 в сравнении с контрольной группой в 1,7 раза (р = 0,01; ОШ = 0,4). Исследование полиморфизма A/ G показало его более частое носительство у пациентов контрольной группы, в сравнении с пациентами KT-1, 2, в 1,6 раз (р = 0,02; ОШ = 2,3), а в сравнении с группой KT-3, 4 в 1,3 раза (р = 0,12; ОШ = 1,7). Полиморфизма A/ A встречался преимущественно у более тяжелых пациентов с COVID-19-ассоциированным поражением легких (II группа), в 2,8 раза (р = 0,006; ОШ = 0,3) чаще в сравнении с пациентами, у которых был меньший объем поражения лёгких (I группа) (табл. 3).

Изучение полиморфизма гена рецептора витамина D VDR: 2 A > G у пациентов с поражением легких на фоне перенесенной COVID-19 инфекции показало преимущественное наследование гомозиготы A/ A в I и II группах, более частое в сравнении с контролем в 2,6 (p = 0.04; OШ = 0.3) и 2,5 (p = 0.04; OШ = 0.4)

раз соответственно. Анализ генотипа A/ G изучае-мого полиморфизма показал преимущественное его наличие у пациентов контрольной группы: в сравнении с I группой в 1,7 раз чаще (p = 0,007; ОШ = 2,7), в сравнении со II группой в 1,6 раз (p = 0,009; ОШ = 2,5) (табл. 3).

ВЫВОДЫ

Принимая во внимание полученные результаты, можно предположить, что недостаточное содержание в крови витамина D может являться одним из факторов, способствующих осложненному течению коронавирусной инфекции. Анализ полиморфизма гена рецептора витамина D VDR: 283 A > G показал преимущественное наследование аллели A и гомозиготы A/ A у более тяжелой категории пациентов. Изучение полиморфизма гена рецептора витамина D VDR: 2 A > G выявило среди заболевших наиболее распространенное носительство гомозиготы A/ A по сравнению с группой контроля.

Литература

- 1. Громова О.А., Торшин И.Ю. Витамин D. Смена парадигмы. М., ГЭОТАР-Медиа. 2018; 94 с. Gromova O.A., Torshinl.Y.U. Vitamin D.A paradigm shift. M., GEOTAR-Media; 2017; 94 p. [In Russian].
- 2. Громова О.А., Торшин И.Ю., Малявская С.И. и др. О перспективах использования витамина D и других микронутриентов в профилактике и терапии COVID-19. PMЖ. 2020; 9:32–38. Gromova O.A., Torshin I.YU., Malyavskaya S.I. On the prospects of using vitamin D and other micronutrients in the prevention and therapy of COVID-19. BC. 2020; 9:32–38 [In Russian].
- 3. Дедов И.И., Мельниченко Г.А., Мокрышева Н.Г. и др. Проект клинических рекомендаций по диагностике, лечению и профилактике дефицита витамина D. 2021. [Электронный ресурс]. URL: https://cyberleninka.ru/article/n/proekt-federalnyh-klinicheskih-rekomendatsiy-po-diagnostike-lecheniyu-i-profilaktike-defitsita-vitamina-d. (дата обращения: 19.12.2023).
 - Dedov I.I., Mel'nichenko G.A., Mokrycheva N.G. Draft clinical guidelines for the diagnosis, treatment and prevention of vitamin D deficiency. 2021. [Electronic resource]. URL: https://cyberleninka.ru/article/n/proekt-federalnyh-klinicheskih-rekomendatsiy-po-diagnostike-lecheniyu-i-profilaktike-defitsita-vitamina-d. (date of the application: 19.12.2023) [In Russian].
- 4. Шрайнер Е.В., Петухова С.К., Хавкин А.И. и др. Ассоциация генетических предпосылок дефицита витамина D с тяжестью перенесенной COVID-19 инфекцией. Экспериментальная клиническая гастроэнтерология. 2022; 202(6):50-55. doi:10.31146/1682-8658-ecg-202-6-50-55. Shrayner E. V., Petukhova S. K., Khavkin A. I. Association of genetic prerequisites of vitamin d defi ciency with severity of past COVID-19 infection. Experimental and Clinical Gastroenterology. 2022; 202(6): 50-55. doi:10.31146/1682-8658-ecg-202-6-50-55 [In Russian].
- 5. Мудров В. А. Алгоритмы статистического анализа данных биомедицинских исследований с помощью пакета программ SPSS (доступным языком). М., Логосфера, 2022; 143 с. Mudrov V. A. A. Algorithms for statistical analysis of biomedical research data using the SPSS software package (in accessible language). M, Logosphere. 2022; 143 p. [In Russian].

